Dividing the Local Galaxy Stellar Mass Function by **Morphology and Structure**

Lee Kelvin

University of Innsbruck
Galaxy and Mass Assembly
"Study structure on scales of 1 kpc to 1 Mpc"

- ~340,000 gals
- \(r < 19.8 \) mag
- ~310 deg\(^2\)
- 27 passbands

- clusters
- groups
- mergers
- structure
GAMA: People (2012)

GAMA SSAC
Ivan Baldry
Steven Bamford
Joss Bland-Hawthorn
Sarah Brough (SC)
Michael Brown
Michael Drinkwater
Simon Driver (PI)
Andrew Hopkins (PI)
Joe Liske (PI)
Jon Loveday
Martin Meyer
Peder Norberg
John Peacock
Aaron Robotham (SC)
Richard Tuffs

GAMA Team members
Nicola Agius
Mehmet Alpaslan
Ellen Andrae
Amanda Bauer
Ewan Cameron
John Ching
Leonidas Christodoulou
Matthew Colless
Chris Conselice
Scott Croom
Nick Cross
Tamara David
Roberto De Propris
Jacintha Dehaize
Simon Ellis
Caroline Foster
Alister Graham
Meiert Grootes
Madusha Gunawardhana
David Hill
Keith Jones
Eelco van Kampen
Lee Kelvin
Marita Lars-Lopez
Angel Lopez-Sanchez
Claudia Maraston
Rob Nichol
Seb Oliver
Hannah Parkinson
Steve Phillips
Kevin Pimbblet
Cristina Popedcu
Matthew Prescott
Rob Proctor
Isaac Roseboom
Eilene Sadler
Anne Sansom
Rob Sharp
Max Spilker
Oliver Steele
Edward Taylor
Daniel Thomas
Jose Vasques Mata
Dinuka Wikasinghe

GAMA Consortium Members
ICC
Shaun Cole
Carlos Frey
HAnnas
Loretta Duane
Steve Eales
CFHTLens
Catherine Heymans
Mike Hudson
Matt Jarvis
GMRT
KIDS
GALEX
DINGO
VIKING
UKIDSS
XMM-XXL
Herschel, L2
GALEX, Earth Orbit
WITE, Earth Orbit

GROUND-BASED FACILITIES:
AAO, Siding Springs
SDSS, Apache Point
VST, Paranal
UKIRT, Mauna Kea
VISTA, Paranal
GMRT, Pune
ASKAP, WA

SPACE MISSIONS

Lee Kelvin
University of Innsbruck
~250,000 spectroscopic redshifts

0 < z < 0.5
GAMA Redshifts

~250,000 spectroscopic redshifts

0 < z < 0.5

Support Branch

Observer Main Sequence

Gold observers

MG members

Team members

Non members
GAMA Redshifts

~250,000 spectroscopic redshifts

0 < z < 0.5

Observer Main Sequence

Support Branch

Joe Liske Giant

Gold observers

MG members

Team members

Non members
How do these galaxies form and evolve?
How do galaxies form and evolve?
Evolutionary Mechanisms

collapse & merging

gas accretion

secular evolution
Survey Data

Galaxy Modelling

Global Trends with Wavelength

Morphological Classification

The Local Galaxy Luminosity/Mass Function

Bulge-Disk
Sérsic Profile

\[I(r) = I_e \exp \left[-b_n \left(\left(\frac{r}{r_e} \right)^{1/n} - 1 \right) \right] \]

- \(n = 0.5 \)
- \(n = 1.0 \)
- \(n = 2.0 \)
- \(n = 4.0 \)
- \(n = 8.0 \)

\(\mu_e = 20 \)

Models many different galaxy profile shapes
Sérsic Profile

The Sérsic profile is a mathematical function used to model the surface brightness profiles of galaxies. It is given by the equation:

\[I(r) = I_e \exp \left(-b_n \left(\left(\frac{r}{r_e} \right)^{1/n} - 1 \right) \right) \]

where:
- \(I(r) \) is the surface brightness at radius \(r \)
- \(I_e \) is the surface brightness at the effective radius \(r_e \)
- \(n \) is the Sérsic index, which determines the shape of the profile
- \(b_n \) is a parameter related to the Sérsic index

The Sérsic profile models many different galaxy profile shapes, including stars, disks, and spheroids. The parameter \(n \) controls the shape; higher values of \(n \) result in more round profiles, while lower values give more disk-like profiles. The effective radius \(r_e \) is a measure of the size of the galaxy. The figure shows how the profile changes with different values of \(n \), from 0.5 to 8.0.

José Luis Sérsic developed this model, which is widely used in astrophysics to describe the light distribution of galaxies.
Sérsic Modelling

\[I(r) = I_e \exp \left[-b_n \left(\left(\frac{r}{r_e} \right)^{1/n} - 1 \right) \right] \]
SIGMA
Structural Investigation of Galaxies via Model Analysis

Imaging & Pointing Data
400" x 400" cutout
Star identification
Empirical PSF
Galaxy detection
Sérsic modelling
Model self-check
Value added results

Model Fit Parameters

SExtractor
PSFEx
GALFIT3
Bertin+ 1996
Bertin 2011
Peng+ 2010
astro-staff.uibk.ac.at/~lee

Wednesday 17 April 2013
Lee Kelvin
University of Innsbruck
Achtung! The model does not always accurately represent the underlying image!
Limits:
0.025 < z < 0.06
$\log_{10} M > 8.537$
(Taylor et al., 2011)

Structural Decomposition:
1. Morphological classification
2. Bulge-Disk decomposition
Visual Classification

Early

ASGR
LSK SPD

Single

SPD ASGR
LSK

Barred

LSK
SPD
ASGR

Late

ASGR
LSK SPD

Multi

SPD ASGR
LSK

Unbarred

SPD
LSK
ASGR
Visual Classification

Early
- Stars: 1056 (27%)
 - Single: 560 (14%)
 - Elliptical: 560 (14%)
 - Multi: 496 (13%)
- Late
 - LBS: 318 (8%)
 - Multi: 802 (20%)
 - Single: 1755 (44%)

Unbarred
- Barred: 703 (18%)
- SB0a: 53 (1.3%)
- S0a: 443 (11%)

Barred
- Barred: 99 (2.5%)
- Sbc: 703 (18%)

SBbcd
- Pure Disk: 1755 (44%)

Sd
Visual Classification

(Lintott et al., 2010)
Multi-Component Models

M01: Single-Sérsic

M02: De Vaucouleurs bulge + exponential disk

M03: Sérsic bulge + exponential disk

M04: Sérsic bulge + Sérsic disk
Elliptical: G346888

M01: Single-Sérsic

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
Elliptical: G346888

M02: De Vaucouleurs bulge + exponential disk

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
Elliptical: G346888

M03: Sérsic bulge + exponential disk

1D Measure

- m = 16.96 (Comp. #1)
- r_e = 1.00''
- n = 2.85
- e = 0.09
- θ = -4.4°
- f = 0.58

- m = 17.27 (Comp. #2)
- r_e = 6.82''
- n = 1.00
- e = 0.18
- θ = 53.8°
- f = 0.42

μ / mag arcsec^2

k = 13
P: X^2/ν = 1.58
G: X^2/ν = 1.04

Δμ

Radius / arcsec

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
S0a: G417433

M01: Single-Sérsic

1D Measure
- Image: m = 16.26
- Model: r_e = 3.96″
- n = 1.47
- e = 0.79
- θ = 37.6°

m_e = 16.26

k = 7
P: X^2/ν = 2.56
G: X^2/ν = 1.01

μ (mag arcsec^-2) vs. Radius / arcsec

Lee Kelvin
University of Innsbruck

Wednesday 17 April 2013
S0a: G417433

M02: De Vaucouleurs bulge + exponential disk

1D Measure

- \(m = 17.56 \)
- \(r_e = 1.91'' \)
- \(n = 4.00 \)
- \(e = 0.02 \)
- \(\theta = 71.5^\circ \)
- \(f = 0.30 \)

- \(m = 16.59 \)
- \(r_e = 4.79'' \)
- \(n = 1.00 \)
- \(e = 0.86 \)
- \(\theta = 37.5^\circ \)
- \(f = 0.70 \)

- \(m_a = 16.21 \)

Comp. #1

Comp. #2

\(k = 12 \)

\(P: X^2/\nu = 0.98 \)

\(G: X^2/\nu = 0.91 \)
S0a: G417433

M03: Sérnel bulge + exponential disk

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
S0a: G417433

M04: Sérsic bulge + Sérsic disk

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
SBbc: G517070

M01: Single-Sérsic

Wednesday 17 April 2013
Lee Kelvin
University of Innsbruck
SBbc: G517070

M02: De Vaucouleurs bulge + exponential disk
SBbc: G517070

M03: Sérsic bulge + exponential disk
SBbc: G517070

M04: Sérsic bulge + Sérsic disk

1D Measure
- Image
- Model

Comp. #1
- m = 19.05
- r_e = 0.78''
- n = 3.13
- e = 0.29
- θ = 67.2°
- f = 0.07
- m_+ = 16.10

Comp. #2
- m = 16.17
- r_e = 6.12''
- n = 0.51
- e = 0.29
- θ = 13.5°
- f = 0.93

G: X^2/ν = 0.93
P: X^2/ν = 1.23
k = 14

Wednesday 17 April 2013
Lee Kelvin
University of Innsbruck
Model Choice

How do we select the 'best' model?
Model Choice

How do we select the 'best' model?

Bayesian Information Criterion:

\[\text{BIC} = \chi^2 + k \cdot \ln(n) \]

- \(\chi^2 \): total goodness of fit
- \(k \): number of free parameters
- \(n \): number of contributing pixels

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
How do we select the 'best' model?

Bayesian Information Criterion:

\[\text{BIC} = \chi^2 + k \cdot \ln(n) \]

Use visual classifications as a guide:

- E/Sd
 - Single-Sérsic
- S0a/Sbc
 - Multi Component
 - Lowest BIC

- x²: total goodness of fit
- k: number of free parameters
- n: number of contributing pixels
Structural Results

Sérsic Index

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck
Structural Results

Half-Light Radius

![Histograms showing the distribution of half-light radii for different galaxy types.](image)
Early/Late Type Bulges

Kormendy Relation

Global Measurements vs. Component Measurements

 absoloute average effective surface brightness

 r_e / kpc
Quick Recap

3945 galaxies: $0.025 < z < 0.06; \log_{10} M > 8.537$

Morphological Classification

- Elliptical
- S0a
- Sbc
- Sd

Bulge-Disk Decomposition

- Elliptical
- Classical Bulge
- Pseudo-Bulge
- Disk

redshifts, stellar masses, aperture-matched photometry, photometric corrections, structural information (size, inclination, position angle), environmental measures and group information
Sérsic Luminosity Functions

Binggeli et al., 1988

\[\phi(L) dL = \phi^* \left(\frac{L}{L^*} \right)^\alpha \exp \left(-\frac{L}{L^*} \right) d\left(\frac{L}{L^*} \right) \]
Sérsic Luminosity Functions

Single-Schechter
Sérsic Luminosity Functions

Double-Schechter Test, e.g.:
quenching of SF in galaxies

(Baldry et al., 2012)
Sérsic LF by Structure

\[(M^*, \alpha_1, \phi^*/10^{-3}, \alpha_2, \phi^*/10^{-3}) \]

- (20.98, -1.21, 3.56, 0.05, 3.89) All

- (20.13, -0.46, 6.50) Spheroid

- (20.67, -1.05, 5.69) Disk

\[\phi (Mpc^{-3} \text{ mag}^{-1}) \]

Absolute \(r \)-band Sérsic Magnitude

Lee Kelvin
University of Innsbruck
Sérsic LF by Structure
Structural Mass Function

(log M^*, α_1, $\phi^*/10^{-3}$, α_2, $\phi^*/10^{-3}$)

(10.55, -0.23, 4.88, -1.43, 1.07) All

(log M^*, α, $\phi^*/10^{-3}$)

(10.92, -0.80, 0.94) Elliptical

(9.91, 0.65, 2.59) Classical Bulge

(9.88, -0.78, 1.98) Pseudo Bulge

(10.70, -1.22, 2.03) Disk

ϕ (Mpc$^{-3}$ dex$^{-1}$)

8 9 10 11

log (Stellar Mass)
Stellar Mass Breakdown

Mass in the local Universe:
Hierarchical merging ~45.8%
Gas accretion ~47.7%
Secular evolution ~6.5%

Lee Kelvin
University of Innsbruck
Stellar Mass Breakdown

Mass in the local Universe:
Hierarchical merging ~45.8%
Gas accretion ~47.7%
Secular evolution ~6.5%
Automated, fast and robust structural decomposition is essential in order to model increasingly large galaxy datasets to a high level of accuracy.

NIR wavelengths are preferred, as they avoid the effects of dust attenuation and hence are able to 'see' more of the galaxy (but multi-λ cannot be ignored).

Early-type bulges are well described by the Kormendy relation, whereas late-type bulges do not follow this relation
→ early-type bulges ~ classical bulge, late-type bulges ~ pseudo-bulge

The evolutionary processes of monolithic collapse/merging and gas accretion contribute roughly equal measures of stellar mass in the local universe.

Secular evolutionary processes contribute ~6.5% of the total stellar mass at z < 0.06 through the creation of pseudo-bulges.
Significant improvements in structural measurements when moving from previous-generation to current-generation to next-generation survey data.
Bulge-Disk decomposition essential for a full understanding of galaxy structure and mass breakdown.
Does SIGMA work?

Wednesday 17 April 2013
Lee Kelvin
University of Innsbruck
Ellipticals dominate at high-mass, disks at low-mass
Late-type bulges share more in common with disks than early-type bulges