Galaxy and Mass Assembly
(GAMA)

Jochen Liske
GAMA

A comprehensive, multi-wavelength, state-of-the-art survey of the low-redshift Universe, exploiting the latest generation of ground and space-based wide-field survey facilities to study galaxy formation and evolution.
Facilities contributing to GAMA

VISTA
UKIRT
AAT
HERSCHEL
VST
GAMA team and structure

Working Groups and Heads

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peacock (ROE)</td>
<td>Baldry (LJMU)</td>
<td>Liske (ESO)</td>
<td>Driver (PI, St And)</td>
<td>Norberg (ROE)</td>
<td>Hopkins (AAO)</td>
<td>Loveday (Sussex)</td>
<td>Bamford (Portsmouth)</td>
</tr>
</tbody>
</table>

Team Members

<table>
<thead>
<tr>
<th>Member</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bland-Hawthorn</td>
<td>USyd</td>
</tr>
<tr>
<td>Couch</td>
<td>Swinburne</td>
</tr>
<tr>
<td>De Propris</td>
<td>CTIO</td>
</tr>
<tr>
<td>Eales</td>
<td>Cardiff</td>
</tr>
<tr>
<td>Frenk</td>
<td>Durham</td>
</tr>
<tr>
<td>Jones</td>
<td>AAO</td>
</tr>
<tr>
<td>Lahav</td>
<td>UCL</td>
</tr>
<tr>
<td>Parkinson</td>
<td>ROE</td>
</tr>
<tr>
<td>Prescott</td>
<td>LJMU</td>
</tr>
<tr>
<td>Roseboom</td>
<td>Sussex</td>
</tr>
<tr>
<td>Sutherland</td>
<td>Camb.</td>
</tr>
<tr>
<td>van Kampen</td>
<td>ESO</td>
</tr>
<tr>
<td>Cameron</td>
<td>St Andrews</td>
</tr>
<tr>
<td>Croom</td>
<td>USyd</td>
</tr>
<tr>
<td>Dunne</td>
<td>Nottingham</td>
</tr>
<tr>
<td>Edmondson</td>
<td>Portsmouth</td>
</tr>
<tr>
<td>Graham</td>
<td>Swinburne</td>
</tr>
<tr>
<td>Kelvin</td>
<td>St Andrews</td>
</tr>
<tr>
<td>Nichol</td>
<td>Portsmouth</td>
</tr>
<tr>
<td>Phillipps</td>
<td>Bristol</td>
</tr>
<tr>
<td>Proctor</td>
<td>Swinburne</td>
</tr>
<tr>
<td>Sharp</td>
<td>AAO</td>
</tr>
<tr>
<td>Thomas</td>
<td>Portsmouth</td>
</tr>
<tr>
<td>Warren</td>
<td>Imperial</td>
</tr>
<tr>
<td>Conselice</td>
<td>Nottingham</td>
</tr>
<tr>
<td>Cross</td>
<td>ROE</td>
</tr>
<tr>
<td>Doyle</td>
<td>Portsmouth</td>
</tr>
<tr>
<td>Ellis</td>
<td>USyd</td>
</tr>
<tr>
<td>Hill</td>
<td>St Andrews</td>
</tr>
<tr>
<td>Kuijken</td>
<td>Leiden</td>
</tr>
<tr>
<td>Oliver</td>
<td>Sussex</td>
</tr>
<tr>
<td>Popescu</td>
<td>UCLan</td>
</tr>
<tr>
<td>Robotham</td>
<td>St Andrews</td>
</tr>
<tr>
<td>Staveley-Smith</td>
<td>UWA</td>
</tr>
<tr>
<td>Tuffs</td>
<td>MPIA</td>
</tr>
<tr>
<td>postdocs+students pending</td>
<td></td>
</tr>
</tbody>
</table>

Affiliated Consortia

- UKIRT/LAS
- VST/KIDS
- VISTA/VIKING
- HERSCHEL-ATLAS
- DURHAM ICC
Status of GAMA imaging

- **GALEX**: observations ongoing, completed by 2010 (?)
- **VST**: KIDS (see K. Kuijken's talk)
- **VISTA**: VIKING (see K. Kuijken's talk)
- **UKIRT**: UKIDSS-LAS ongoing
- **HERSCHEL**: ATLAS to commence this year
- **ASKAP**: EoI submitted in Dec 2008
 invitation for full proposal received in Jan 2009
- **GMRT**: 1st round of observations completed, further obs required for full coverage
GAMA spectroscopy

- Fibre spectroscopy using AAT/AAOmega (2dF successor)
- Area: 240 deg2 split over 5 regions
- Main sample: ~250K galaxies to $r < 19.8$ mag and $K_{\text{AB}} < 17.5$ mag (selected from SDSS and UKIDSS-LAS)
- $<z> \sim 0.25$
- $R = 1300$, $370 < \lambda < 880$ nm
- Science goal of GAMAz: study of structure on 1 kpc – 1 Mpc scales
 - CDM halo mass function of groups and clusters from group velocity dispersion
 - Galaxy stellar mass function to Magellanic Cloud masses by type and environment
 - Merger rate as a function of mass, mass ratio, type and environment
 - Properties of galaxy components (bulge-disk decomposition)
GAMA survey regions

GAMA 48 deg2
survey regions
GAMA-N survey regions
GAMA in comparison
GAMA in comparison
GAMA spectroscopy

- Fibre spectroscopy using AAT/AAOmega (2dF successor)
- Area: 240 deg^2 split over 5 regions
- Main sample: ~250K galaxies to r < 19.8 mag and K_{AB} < 17.5 mag (selected from SDSS and UKIDSS-LAS)
- \langle z \rangle \sim 0.25
- R = 1300, 370 < \lambda < 880 nm
- Science goal of GAMAz: study of structure on 1 kpc – 1 Mpc scales
 - CDM halo mass function of groups and clusters from group velocity dispersion
 - Galaxy stellar mass function to Magellanic Cloud masses by type and environment
 - Merger rate as a function of mass, mass ratio, type and environment
 - Properties of galaxy components (bulge-disk decomposition)
The halo mass function

- Robust prediction of structure formation models.
- Measurement requires depth + resolution + high completeness in dense areas.
The stellar mass function

- Provides mass-dependent star-formation efficiency and constrains feedback.
The galaxy merger rate

- Mergers are a principal mode of galaxy assembly in CDM models of galaxy formation.

- Identify all stages of mergers by using dynamical pairs and morphological indicators.

- Explore merger rate as a function of mass ratio and merger type.

- Crucial: high completeness for close pairs, high-resolution imaging, depth.

Lin et al. (2008)
Properties of bulges and disks

Multi-λ bulge-disk decomposition:

- Stellar mass functions to assess relative importance of different formation processes.
- Luminosity-size relations.

- Colour profiles.
- Dust in disks.
- Classical vs pseudo-bulges.
- ...
Properties of bulges and disks

Multi-\(\lambda\) bulge-disk decomposition:

- Stellar mass functions to assess relative importance of different formation processes.
- Luminosity-size relations.
- Colour profiles.
- Dust in disks.
- Classical vs pseudo-bulges.
- ...
Status of GAMA spectroscopy

- 66 nights allocated (2008-2010)
- 21/22 clear nights in March-April 2008
 - 159 fields observed → all 3 GAMA-N regions covered almost entirely at least once to variable depths (including a deep strip to $r < 19.8$ mag)
 - 50,746 good quality redshifts at 96.6% (!) completeness
- 2009 campaign ongoing
- An additional ~90 nights are required to complete the survey: to be requested by an ASKAP/GAMA consortium in 2009/2010
GAMA example spectrum

C09_Y1_AX2.fits[292] G425770
mcg = 17.85, z = 0.08193, iq = 4 Em

Wavelength (Angstroms)
PCA sky subtraction

PCA Skysubtraction

Skysubtracted Spectrum

Wavelength (Angstrom)
GAMA year 1 redshift completeness
Spectral decomposition with GANDALF
GAMA year 1 redshift distribution
GAMA year 1 redshift cone
Redshift cone before GAMA Y1

GAMA etc.

March 2008

3° slice
100427 galaxies
Redshift cone after GAMA Y1

GAMA etc.

March 2008

3° slice

144928 galaxies
GAMA year 2 progress
GAMA year 2 progress
GAMA year 1 r-band LF

1/5th of final sample!
GAMA photo-z improvement

SDSS estimates for GAMA objects
GAMA photo-z improvement

See J. Loveday's talk later today.
Spec-z vs photo-z

SDSS main sample
to $z < 0.2$: photo-z
Spec-z vs photo-z

SDSS main sample
to z < 0.2: spec-z
Colour bimodality vs redshift
SFR vs redshift
What's next?

Does the VLT have a role to play in studies of the low-redshift Universe?
What's missing?

Gas
- mass
- metallicity

Dust
- mass
- type
- distribution

Environment
- field
- groups
- clusters
- mergers

Stars
- mass
- stellar populations
- SFH
- SFR

Morphology/structure
- size
- concentration
- asymmetry
- B/D separation

AGN activity / SMBHs
What's missing?

- Stars
 - mass
 - stellar populations
 - SFH
 - SFR

- Gas
 - mass
 - metallicity

- Dust
 - mass
 - type
 - distribution

- Environment
 - field
 - groups
 - clusters
 - mergers

- Morphology/structure
 - size
 - concentration
 - asymmetry
 - B/D separation

- AGN activity / SMBHs

Go deeper?

- Push the VLT to its limit, pre-selecting low-z gals
- Hard to get enough volume with VIMOS
What's missing?

Gas
- mass
- metallicity

Dust
- mass
- type
- distribution

Environment
- field
- groups
- clusters
- mergers

Stars
- mass
- stellar populations
- SFH
- SFR

Morphology/structure
- size
- concentration
- asymmetry
- B/D separation

AGN activity / SMBHs

Kinematics
Some science drivers for a spatially resolved (1D), 'high' resolution spectroscopic VIMOS survey of low-redshift GAMA-selected galaxies:

- Dynamical mass function
- Fundamental Plane at $L \ll L^*$
- Tully-Fisher at $L \ll L^*$
- Gradients: abundances, extinction, SFR
- Stellar populations of (pseudo-)bulges and disks
- Joint photometric and kinematic bulge-disk decomposition
- ...
- See also L. Tresse's talk later today.
• VIMOS slits can be up to 30” long.
• VIMOS slits can be tilted.
• Highest resolution: 2000-2500.
• Number density of $r < 19.8$ galaxies is well matched to VIMOS.
• GAMA is an excellent starting point for selecting this sample (for many reasons)!
• 3h exposure time → S/N ~ 22 in the continuum at ~21.5 mag/arcsec2 (in R).
• ~450 hours (incl overheads) would result in a sample of ~8000 galaxies!
GAMA+

- VIMOS slits can be up to 30” long.
- VIMOS slits can be tilted.
- Number density of r < 19.8 galaxies well matched to VIMOS.
- GAMA is an excellent starting point for selecting this sample (for many reasons)!
- 3h exposure time → S/N ~ 22 in the continuum at ~21.5 mag/arcsec² (in R).
- ~450 hours (incl. overheads) would result in a sample of ~8000 galaxies!
GAMA+

- VIMOS slits can be up to 30” long.
- VIMOS slits can be tilted.
- Number density of $r < 19.8$ galaxies is well matched to VIMOS.
- GAMA is an excellent starting point for selecting this sample (for many reasons)!
- 3h exposure time \rightarrow S/N ~ 22 in the continuum at ~ 21.5 mag/arcsec2 (in R).
- ~ 450 hours (incl overheads) would result in a sample of ~ 8000 galaxies!

- Is this only the first step? See JBH's talk on FIREBALL tomorrow.
Conclusions

- In my view, the role of the VLT in the field of low-redshift galaxy surveys lies in opening up the domain of spatially resolved spectroscopy, which has largely been missing from past large (field) surveys.
- This is the last axis of observational parameter space that remains to be added to large low-z surveys.
- It would represent a major milestone in the campaign of obtaining a complete picture of the galaxy population at low redshift for comparison with high-z studies and theory.
- No competitor in sight (for now).
- 'Obvious' future development: full 3D spectroscopy.